ON THE ABSORPTION OF NONLINEAR WAVES
BY DISPERSING MEDIA

E. N, Pelinovskii

The effect of dissipative processes on the propagation of nonlinear waves in dispersing
media is analyzed here. I is explained in what manner the wave attenuation depends on the
nonlinearity parameter and on the character of the dissipation mechanism. Equations are
derived which describe the propagation of a solitary pulse or so-called soliton in such a
medium.

1. As is well known, wave processes in slightly nonlinear disgipationless media can sometimes be
described approximately by the Korteweg-deVries equation

U+ Ully, + Bllyze = 0 (1.1)

Thus, (1.1) describes the propagation of surface waves on "shallow" water [1, 2], of acoustic and mag-
netohydrodynamic waves in plasma [2], of electromagnetic waves in nonlinear transmission lines, etc.
Steady-state solutions to Eq. {(1.1) — cnoidal waves — have been throughly analyzed (see, e.g., [3]). A special
class of such solutions are solitary waves (solitons), which play an important role in the theory of transient
"fission" processes [2]. ‘

The effect of dissipation processes on nonlinear waves has been studied only in a few individual cases.

The propagation of a solitary wave in plasma, for instance, was analyzed in [4] taking into account a Landau
attenuation.

Here we will consider the effect of various kinds of dissipation processes on the propagation of nonlinear
waves in dispersing media as a function of the nonlinearity parameter characterizing the profile of the steady-
state solution to (1.1).

2. When the dissipation is sufficiently weak, Eq. (1.1) assumes the approximate form

Up+ ulty + Butgyy + ote — 1, =0 2.1)

Thus, the term Suxy in the case of surface waves and plasma waves accounts for the viscosity of the
medium (6 represents here the kinematic viscosity). The term au accounts for the friction between the
fluid and the ground or the air [5]. These two terms correspond respectively to the high-frequency and the
low-frequency losses in nonlinear lines transmitting electromagnetic waves. Depending on the specific
characteristics of a system, one or the other dissipation mechanism may be predominant. For a solution
which is periodic in space one can easily obtain from (2.1) a series of integral relations of the "conserva-
tion law" type [2]. Integrating (2.1) over the period A, for instance, we have

A
S u(z, t)dz = const e~ 2.2)

0
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]

In this way, a decrease in the "momentum™" of a wave is
due to low-frequency losses only. Analogous equations are ob-
tained for the energy [u’dx, etc.
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3. Equation (2.1) will now be solved approximately under
the assumption that the dissipation terms are small, so that lo-
cally the wave is almost cnoidal, and the solution will be written
in the convenient form [6]:

tﬂﬂ

_ 12:;3% K(T)kf%z[m;)e ;'r], i 0= ot —kz (3.1)
a2 k2 [2- -3

Here Z is the Jacobi zeta-function with the g-period 2 and with the mean value zero, E(y) and K(y) are com-
plete elliptic integrals with the modulus vy, and w and k are the frequency and the wave number, respec-
tively. Actually, ¥ is a parameter defining the wave nonlinearity (as y— 0, the wave becomes harmonic;

v =1 corresponds to a solitary wave or so-called soliton). The parameter y also determines the wave am-
plitude

A=u, —u_ == 1282 K3 (v) (3.2)

ns

For further analysis it will be convenient fo transform Eq. (2.1): with a change of variables

O, =u,  H=u,—,0up (3.3)

Equation (2.1) can be easily written in the Lagrange form of the second kind:

aaL+a oL AR @9 8L AL _  oR (3.4)
% 9, " oz a®,  od, ' oz dH, oH ~  OH, -

where L is the Lagrangian (the Lagrange function density)

L= 1/Iq’acq)l + l/l(st + BHx(D:: + IIIBH‘ - l/sa’ﬂ—ld)x’ (3 .5)
and R is the Rayleigh function density

R= 1/2¢(D:’ - lllsHsd)x (3 ‘6)

Because energy is dissipated in the system, the solution fo (3.1) is strictly not valid, but with small
values of o and 5 the wave locally approaches a cnoidal one whose envelopes are slow functions of the space
coordinates and of time. The equations for the variable amplitude A(x, t), frequency w(x, t) = 8¢, and wave
number k(x, t) =—0x will be derived using the generalized variational method in terms of averages. Ac-
cording to this principle, the Lagrange function and the Rayleigh function densities must be averaged over
a period of the quasi-stationary solution (3.1) and then one must write down the corresponding Lagrange
equations of the second kind in the generalized "coordinates" A, 4. (For conservative systems such an ap-
proach was first proposed in [7]). The equations of the envelopes are

d a<Ly 8 <Ly IRy ok Aw

e T wm ok =k o T =0 3.7

The second of Egs. (3.7) is a consequence of expressing w and k in terms of 9. Here

(LY = — 0k (D3 + Bk (Qglyy + 1138 CHYY — 1/ 37187k (D> 3.8)

¢RY = Ll COFy — 1/;0k3 KDy Hiod (3.9)
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Equations (3.7) must be supplemented with boundary or with initial conditions. To be specific, we will
consider the initial-value problem, i.e., we will find the variation of parameters in the solution which at
t=0 correspond to (3.1) with certain given initial values of Ay, k¢, wg, v4.* Obviously, the space period does
not change with time when t >0 (k=k;). The other parameters are functions of time only. Under these con-
ditions, then, (3.7) reduces to

ZBI) — — 20, (1) — 20675 (1) (3.10)

where

(3.11)

Kt r4—2r E 1—7 B2
Vi =K I =[5~ —3 — 7]

Ya(1) = K*Zo® = o 20— v + 1) £ — (1 =1 @2 —1)]

While determining y from (3.10), we will at the same time find all the wave characteristics: its am-
plitude and frequency. The value of y is of interest for other reasons too: this parameter defines the ef-
fective width of the wave's spectrum (i.e., its degree of nonsinusoidality).

The energy dissipation is described conveniently in terms of the absorption coefficient

"= — Tidt—ln AA‘:) (3.12)
Using (3.2) and (3.10), we have for »,
dl 2
% = 2(aY; I 8kYy) __’;_%%ﬂ (3.13)

The curves of n/a (for 6=0) and of n/ 6k} (for o =0) as functions of y are shown in Fig. 1. We note
that the absorption coefficient n changes rapidly only near v = 1. This has to do with the fact that elliptic
functions differ from frigonometric functions substantially only near y~ 1 (see, e.g. [3]) and, therefore, a
quasilinear approximation is possible here over a wide range of %,

For small and for large values of y it is easy to derive simple asymptotic expressions for n as well
as for y(t) and A(t).

When y «1 (the wave is almost sinusoidal), then

Y, = Va1 373, K(y)=1n
®=0o+ 0k, 7T(t)=qoe*, A(t)= Ape™ (3.14)

It makes sense that this final result can also be obtained from (2.1) without difficulty by neglecting
there the nonlinear term uuy.

When 1—y «1 (the wave becomes almost a sequence of weakly interfering solitons), however, then

16

2 p 8 1
Yl’/:"/:;—_-,-tzK3’ Yzzm—Ks, K(T)lenT_—T

and we have

4
3

Ay e-—'/, at

"= 3
1 715 8 Ao 1871 (1 — =2 o)

o F B4, A@)= (3.15)

*We will note that, since the Korteweg-deVries equation describes wave processes in slightly nonlinear
systems, the solution to the boundary-value problem can be arrived at from the solution to the initial-value
problem by changing variable t to z/c (c is the linear propagation velocity of the wave [2]; in (1.1) x is the
"running" coordinate x =z —ct).
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It is evident that, when 6 =0, the amplitude of solitons decreases exponentially but faster than it would
according to linear theory.

If =0, then

Ao
A(t) = Ty (3.16)

The attenuation characteristic is qualitatively different than in the linear case. After the elapse of a
long time interval, the attenuation is determined by the dispersion parameter g8 and the "viscosity" 6 only,
and it does not depend on the initial pulse amplitude*

458

At) = —45»

F— oo (3.17)

The following is to be said concerning the calculation of the absorption coefficient. In the case of
slightly nonlinear media, some authors {(e.g. of [8]), prefer to determine % as a sum of partial (with respect
to the wave number) absorption coefficients. According to this method, the soliton absorption coefficient
would be a+ 0.065687! A, i.e., approximately 30% smaller than according to Eq. (3.15) where the nonlinearity
is taken into account.

We note, in conclusion, that existing theories agree well with results of the experiment in which the
propagation of solitary radio waves along nonlinear transmission lines was studied.

The author thanks L. A. Ostrovskii for his continued interest in this work and for discussing the resuits,
and A. A. Andronov and A. V. Gaponov for valuable comments.

Note Added in Proof. Equations (3.15) and (3.16) were also obtained by E. Ott and R. N. Sudan in
"Damping solitary waves," Phys. of Fluids, 13, No. 6 (1970).
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*In plasma with a Landau attenuation the soliton amplitude decreases as t™ while at t— « the attenuation is
also independent of the initial amplitude [4]. An analogous situation exists in the case of shock waves in a
viscous medium [8].
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