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N O N L I N E A R  W A V E S  

The effect of dissipative p rocesses  on the propagation of nonlinear waves in dispersing 
media is analyzed here.  It is explained in what manner the wave attenuation depends on the 
nonlinearity pa r ame te r  and on the charac te r  of the dissipation mechanism. Equations are 
derived which descr ibe  the propagation of a sol i tary  pulse or  so-cal led  soliton in such a 
medium. 

1. As is well known, wave p roces se s  in slightly nonlinear diss ipat ionless  media can somet imes  be 
descr ibed approximately by the Korteweg-deVries  equation 

ut + uux -4- ~u~x = 0 (1.1) 

Thus, (1.1) descr ibes  the propagation of surface waves on "shallow" water  [1, 2], of acoustic and mag-  
netohydrodynamic waves in p lasma [2], of e lect romagnet ic  waves in nonlinear t r ansmiss ion  lines, etc. 
Steady-state solutions to Eq. (1.1) - cnoidal waves - have been throughly analyzed (see, e.g., [3]). A special  
c lass  of such solutions are  sol i tary  waves (solitons), which play an important  role  in the theory  of t ransient  
"fission" p rocesses  [2]. 

The effect of dissipation p rocesses  on nonlinear waves has been studied only in a few individual cases .  
The propagation of a sol i tary  wave in plasma,  for instance, was analyzed in [4] taking into account a Landau 
attenuation. 

Here we will consider  the effect of var ious  kinds of dissipation p rocesses  on the propagation of nonlinear 
waves in dispersing media as a function of the nonlinearity pa rame te r  charac ter iz ing  the profi le of the s teady-  
state solution to (1.1). 

2. When the dissipation is sufficiently weak, Eq. (1,1) a ssumes  the approximate form 

ut + uux + [tu:~xx + au -- 5u~x = 0 (2.1) 

Thus, the t e rm 5Uxx in the case of surface waves and p lasma waves accounts for the viscosi ty  of the 
medium (5 rep resen t s  here the kinematic viscosi ty) .  The t e r m  ~u accounts for the fr ict ion between the 
fluid and the ground or the air  [5]. These two t e rms  cor respond respec t ive ly  to the high-frequency and the 
low-frequency losses  in nonlinear lines t ransmit t ing e lectromagnet ic  waves.  Depending on the specific 
charac te r i s t i cs  of a sys tem,  one or  the other dissipation mechanism may be predominant .  For  a solution 
which is periodic in space one can easily obtain f rom (2.1) a ser ies  of integral  relat ions of the "conserva-  
tion law" type [21. Integrating (2.1) over the period A, for instance, we have 

A 

I u dx conste -~t (2.2) (~, t) 
0 
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In this way, a decrease  in the "momentum" of a wave is 
due to low-frequency losses  only. Analogous equations are  ob-  
tained for the energy fu2dx, etc. 

3. Equation (2.1) will now be solved approximately under 
the assumption that the dissipation t e rms  a re  small ,  so that lo-  
cally the wave is almost  cnoidal, and the solution will be wri t ten 
in the convenient form [6]: 

. E(~) 1 o~ = - - ~ - -  K '  ('l') [2 - -  'i" - -  ,.'l----k--~-~-(~) ] 

(3.1) 

Here Z is the Jacobi  zeta-function with the 0-per iod 2 and with the mean value zero,  E@) and K@) are  com-  
plete elliptic integrals with the modulus ~f~-, and ~ and k are  the frequency and the wave number,  r e s p e c -  
tively. Actually, T is a pa r ame te r  defining the wave nonlinearity (as T-" 0, the wave becomes harmonic;  
T = 1 cor responds  to a sol i tary wave or  so-ca l led  soliton). The pa rame te r  T also determines the wave am-  
plitude 

.. t2~, wK' A - = u + - - u _ = T  l if) 

For  fur ther  analysis  it will be convenient to t r ans fo rm Eq. (2.1): with a change of var iables  

(3.2) 

r  ~ = u ,  I t  = u ,  - -  i / i S u f ~ - '  

Equation (2.1) can be easi ly  writ ten in the Lagrange form of the second kind: 

(3.3) 

0 /t/.. a aL o ~ R  o ~ / ) i t .  8L aR (3.4) 

where L is the Lagrangian (the Lagrange function density) 

L = i/soil=el:it + i l l@=" A- [3H=@= + i i ltlHI - -  i1881p-iCl=' 

and R is the Rayleigh function density 

(3.5) 

R = lll~@=" - -  lllSH=(ll= (3.6) 

Because energy is dissipated in the system, the solution to (3.1) is strictly not valid, but with small 
values of ~ and 6 the wave locally approaches a cnoidal one whose envelopes are slow functions of the space 
coordinates and of time. The equations for the variable amplitude A(x, t), frequency co(x, t) = 0t, and wave 
number k(x, t) = - 0  x will be derived using the generalized variational method in terms of averages. Ac- 
cording to this principle, the Lagrange function and the Rayleigh function densities must be averaged over 
a period of the quasi-stationary solution (3.1) and then one must write down the corresponding Lagrange 
equations of the second kind in the generalized "coordinates" A, 0. (For conservative systems such an ap- 
proach was first proposed in [7]). The equations of the envelopes are 

at o~ az a ~  = a-----~ ' ~ + ~ =  0 (3.7) 

The second of Eqs. (3.7) is a consequence of express ing ~ and k in t e r m s  of 8. Here 

<L> - - '/s~ < ~  ~ ~}' ~,He> + w,~ <H'>.  ~18~'~6~ , ~o*> (3.8) 

(3.9) 
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Equa t ions  (3.7) m u s t  be s u p p l e m e n t e d  wi th  b o u n d a r y  o r  wi th  i n i t i a l  cond i t i ons .  To be s p e c i f i c ,  we wi l l  
c o n s i d e r  the  i n i t i a l - v a l u e  p r o b l e m ,  i . e . ,  we wi l l  f ind the  v a r i a t i o n  of p a r a m e t e r s  in the  so lu t ion  which  a t  
t = 0 c o r r e s p o n d  to (3.1) wi th  c e r t a i n  g iven  in i t i a l  v a l u e s  of A0, k0, w0, To.* Obv ious ly ,  the  s p a c e  p e r i o d  does  
no t  change  wi th  t i m e  when t >0 (k ~ k0). The o t h e r  p a r a m e t e r s  a r e  func t ions  of t i m e  on ly .  Under  t h e s e  c o n -  
d i t i ons ,  then ,  (3.7) r e d u c e s  to 

d Y l  (~() __ 
dt 2aY1 (7") - -  26ko2Y~ (T) (3.10) 

w h e r e  

K4 [ 4 - - 2 T  E l - - T  E ~]  
Yi(7) = K~ (Z0*> = ~ 3 K " 3 K ~ 

4K 6 v 2 E 
Y~ (~-) = K" < z , : >  = ~ [2  (~- - ~ + ~) ~ - ( l  - -  ~-) (2 - -  ~')] 

(3.11) 

Whi le  d e t e r m i n i n g  7 f r o m  (3.10), we w i l l  a t  the  s a m e  t i m e  f ind  a l l  the  wave  c h a r a c t e r i s t i c s :  i t s  a m -  
p l i t ude  and f r e q u e n c y .  The  va lue  of Y is  of i n t e r e s t  fo r  o t h e r  r e a s o n s  too:  t h i s  p a r a m e t e r  de f ines  the  e f -  
f ec t ive  width  of the  w a v e ' s  s p e c t r u m  ( i . e . ,  i t s  d e g r e e  of n o n s i n u s o i d a l i t y ) .  

The  e n e r g y  d i s s i p a t i o n  i s  d e s c r i b e d  c o n v e n i e n t l y  in t e r m s  of the  a b s o r p t i o n  coe f f i c i en t  

d A (t) 
x ----- - -  -~- In Ao 

Using  (3.2) and  (3.10), we have  fo r  n ,  

(3.12) 

9 :,.,v • ,q/: ~v ~ d In (TKZ)/dT x = " ~ - - t  T " ~ 1 7 6  ~2J d - ~ l / ~  (3.13) 

The  c u r v e s  of ~ / ~  (for  6 = 0) and of  n / ~k~ (for ~ = 0) a s  func t ions  of  Y a r e  shown in F i g .  1. We note  
tha t  the  a b s o r p t i o n  c o e f f i c i e n t  ~4 changes  r a p i d l y  on ly  n e a r  7 = 1. Th i s  has  to  do wi th  the  f ac t  t ha t  e l l i p t i c  
func t ions  d i f f e r  f r o m  t r i g o n o m e t r i c  func t ions  s u b s t a n t i a l l y  only  n e a r  7 ~  1 ( see ,  e .g .  [3]) and,  t h e r e f o r e ,  a 
q u a s i l i n e a r  a p p r o x i m a t i o n  i s  p o s s i b l e  h e r e  o v e r  a wide  r a n g e  of n~  

F o r  s m a l l  and fo r  l a r g e  v a l u e s  of 7 i t  i s  e a s y  to d e r i v e  s i m p l e  a s y m p t o t i c  e x p r e s s i o n s  fo r  ~ a s  w e l l  

a s  fo r  T(t) and A(t) .  

When Y << 1 (the wave  i s  a l m o s t  s i n u s o i d a l ) ,  then  

Y t  ~ Y~ ~ tl~t~s a ~ ' l ,  K (T) m t/2 
x = a + 6ko ~, y.(t) = Toe -~t, A (t) = Aoe -~t (3.14) 

It m a k e s  s e n s e  tha t  t h i s  f ina l  r e s u l t  can  a l so  be  ob t a ined  f r o m  (2.1) wi thou t  d i f f i cu l ty  by n e g l e c t i n g  
t h e r e  the  n o n l i n e a r  t e r m  uu x.  

When 1 - T  << 1 (the wave  b e c o m e s  a l m o s t  a s e q u e n c e  of w e a k l y  i n t e r f e r i n g  so l i t ons ) ,  h o w e v e r ,  then  

Y~ ~ ~---~ K 3, Y2 ~ I 5 - ~  K 5, K ( T ) ~ - ~ + l n  i6 
l - - T  

and we have 

•  + Aoe-  % at 

A (t) = t +1/156Aoa-13 -1 {l --  ,-'/" ~t) (3.15) 

*We wi l l  note  tha t ,  s i n c e  the  K o r t e w e g - d e V r i e s  equa t ion  d e s c r i b e s  wave  p r o c e s s e s  in s l i g h t l y  n o n l i n e a r  
s y s t e m s ,  the so lu t i on  to the  b o u n d a r y - v a l u e  p r o b l e m  can  be a r r i v e d  at  f r o m  the so lu t i on  to the  i n i t i a l - v a l u e  
p r o b l e m  by changing  v a r i a b l e  t to z / c  (c is  the l i n e a r  p r o p a g a t i o n  v e l o c i t y  of the  wave  [2]; in (1.1) x is  the  
" runn ing"  c o o r d i n a t e  x = z - c t ) .  
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It is evident that,  when 5 = 0, the ampli tude of soli tons d e c r e a s e s  exponential ly but f a s t e r  than it would 
according to l inear  theory .  

If ~ = 0, then 

A0 (3.16) A (t) = t § ~/e 6~-IA0t 

The attenuation cha rac t e r i s t i c  is qual i ta t ively different  than in the l inear  case .  After  the e lapse  of a 
long t ime  interval ,  the at tenuation is de te rmined  by the d i spers ion  p a r a m e t e r  fl and the ' v i s c o s i t y  ~ 6 only, 
and it does not depend on the init ial  pulse amplitude* 

45 
A ( t ) ~ - ~ - ,  t :+  ~ (3.17) 

The following is to be said concerning the calculat ion of the absorpt ion coefficient.  In the case  of 
slightly nonlinear media,  some authors  (e.g. of [8]), p r e f e r  to de te rmine  ~ as a sum of pa r t i a l  {with r e sp ec t  
to the wave number) absorpt ion coeff icients .  According to this method, the soliton absorpt ion  coefficient  
would be ~+ 0.0655fl -~ A, i .e . ,  approx imate ly  30% sma l l e r  than according to Eq. (3.15) where  the nonlineari ty 
is taken into account.  

We note, in conclusion, that  exist ing theor ies  agree  well with r e su l t s  of the exper imen t  in which the 
propagat ion  of so l i ta ry  r a d i o w a v e s  along nonlinear  t r a n s m i s s i o n  l ines was studied. 

The author thanks L. A. Os t rovsk i i  for  his continued in te res t  in this work and for  discuss ing the resu l t s ,  
and A. A. Andronov and A. V. Gaponov for  valuable comment s .  

Note Added in Proof .  Equations (3.15) and (3.16) were  also obtained by E. Ott and R. N. Sudan in 
~Damping so l i ta ry  waves ,  n Phys.  of Fluids,  13, No. 6 (1970). 
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